_ Sin embargo_ dijo Ramanujan a mi me parece un número muy interesante, ya que es el primer número que puede expresarse como la suma de dos cubos de dos maneras diferentes :
13 + 123
93 + 103
93 + 103
En honor a este diálogo se llaman taxicab numbers o números taxi a los números que pueden expresarse como la suma de dos cubos en más de una forma.
Así tenemos :
Taxicab(2) = 1729
= 13 + 123
= 93 + 103
= 13 + 123
= 93 + 103
Publicado por primera vez por Bernard Frénicle de Bessy en 1657.
Taxicab(3) = 87539319
= 1673 + 4363
= 2283 + 4233
= 2553 + 4143
= 1673 + 4363
= 2283 + 4233
= 2553 + 4143
Encontrado por Leech en 1957.
Taxicab(4) = 6963472309248
= 24213 + 190833
= 54363 + 189483
= 102003 + 180723
= 133223 + 166303
= 24213 + 190833
= 54363 + 189483
= 102003 + 180723
= 133223 + 166303
Encontrado por E. Rosenstiel, J.A. Dardis, and C.R. Rosenstiel en 1991.
Taxicab(5) = 48988659276962496
= 387873 + 3657573
= 1078393 + 3627533
= 2052923 + 3429523
= 2214243 + 3365883
= 2315183 + 3319543
= 387873 + 3657573
= 1078393 + 3627533
= 2052923 + 3429523
= 2214243 + 3365883
= 2315183 + 3319543
Encontrado por David Wilson en 1997
Taxicab(6) = 24153319581254312065344
= 289062063 + 5821623
= 288948033 + 30641733
= 286574873 + 85192813
= 270932083 + 162180683
= 265904523 + 174924963
= 262243663 + 182899223
= 289062063 + 5821623
= 288948033 + 30641733
= 286574873 + 85192813
= 270932083 + 162180683
= 265904523 + 174924963
= 262243663 + 182899223
Encontrado por Randall L. Rathbun en 2002
David Wilson descubrió 8230545258248091551205888 en 1997.
Taxicab(7) <= 24885189317885898975235988544
= 26486609663 + 18472821223
= 26856356523 + 17667420963
= 27364140083 + 16380248683
= 28944061873 + 8604473813
= 29157349483 + 4595311283
= 29183751033 + 3094814733
= 29195268063 + 587983623
= 26486609663 + 18472821223
= 26856356523 + 17667420963
= 27364140083 + 16380248683
= 28944061873 + 8604473813
= 29157349483 + 4595311283
= 29183751033 + 3094814733
= 29195268063 + 587983623
Encontrado por Christian Boyer en 2006
Taxicab(8) <= 50974398750539071400590819921724352
= 2995120635763 + 2888736628763
= 3363799426823 + 2346048294943
= 3410757278043 + 2243762461923
= 3475245790163 + 2080291582363
= 3675895857493 + 1092768173873
= 3702983383963 + 583604532563
= 3706336380813 + 393041470713
= 3707799043623 + 74673919743
= 2995120635763 + 2888736628763
= 3363799426823 + 2346048294943
= 3410757278043 + 2243762461923
= 3475245790163 + 2080291582363
= 3675895857493 + 1092768173873
= 3702983383963 + 583604532563
= 3706336380813 + 393041470713
= 3707799043623 + 74673919743
Encontrado por Christian Boyer en 2006
Taxicab(9) <= 136897813798023990395783317207361432493888
= 416321768370643 + 401534391397643
= 467568120327983 + 326100712996663
= 474095261647563 + 311882982206883
= 483059164832243 + 289160529948043
= 510949524191113 + 151894776167933
= 514714690370443 + 81121030025843
= 515180756932593 + 54632764428693
= 515300421426563 + 40768778055883
= 515384067063183 + 10379674843863
= 416321768370643 + 401534391397643
= 467568120327983 + 326100712996663
= 474095261647563 + 311882982206883
= 483059164832243 + 289160529948043
= 510949524191113 + 151894776167933
= 514714690370443 + 81121030025843
= 515180756932593 + 54632764428693
= 515300421426563 + 40768778055883
= 515384067063183 + 10379674843863
Encontrado por Christian Boyer en 2006
Taxicab(10) <= 7335345315241855602572782233444632535674275447104
= 156953306675731283 + 151378465556910283
= 176273181363648463 + 122939968799740823
= 178733913641130123 + 117579884291993763
= 182113305141754483 + 109013519790411083
= 192627970620048473 + 57264330615309613
= 194047438269655883 + 30582628319741683
= 194223145363586433 + 20596552189616133
= 194268258877813123 + 15369829327066763
= 194293797782705603 + 9040693335688843
= 194299793282818863 + 3913137416135223
Encontrado por Christian Boyer en 2006
Taxicab(11) <=2818537360434849382734382145310807703728251895897826621632
= 114105053953256640563 + 110052144459873773563
= 128150602851372430423 + 89377357317411576143
= 129939555217101597243 + 85480575880279463523
= 132396372838055506963 + 79252828887628855163
= 136001929743147327863 + 67163799217793993263
= 140040534640775237693 + 41631168357330086473
= 141072487622039824763 + 22233570788452201363
= 141200226679327334613 + 14973693441850926513
= 141233024204170138243 + 11173865920777534523
= 141251590988026971203 + 6572584055045786683
= 141255949716609311223 + 2844850901530304943
Encontrado por Christian Boyer en 2006= 156953306675731283 + 151378465556910283
= 176273181363648463 + 122939968799740823
= 178733913641130123 + 117579884291993763
= 182113305141754483 + 109013519790411083
= 192627970620048473 + 57264330615309613
= 194047438269655883 + 30582628319741683
= 194223145363586433 + 20596552189616133
= 194268258877813123 + 15369829327066763
= 194293797782705603 + 9040693335688843
= 194299793282818863 + 3913137416135223
Encontrado por Christian Boyer en 2006
Taxicab(11) <=2818537360434849382734382145310807703728251895897826621632
= 114105053953256640563 + 110052144459873773563
= 128150602851372430423 + 89377357317411576143
= 129939555217101597243 + 85480575880279463523
= 132396372838055506963 + 79252828887628855163
= 136001929743147327863 + 67163799217793993263
= 140040534640775237693 + 41631168357330086473
= 141072487622039824763 + 22233570788452201363
= 141200226679327334613 + 14973693441850926513
= 141233024204170138243 + 11173865920777534523
= 141251590988026971203 + 6572584055045786683
= 141255949716609311223 + 2844850901530304943
Taxicab(12) <= 73914858746493893996583617733225161086864012865017882136931801625152
= 339006115295125479103763 + 326964921190284981246763
= 380735441071427490777823 + 265540128590029792711943
= 386050418550008845400043 + 253962790940310286117923
= 393349623701862911178163 + 235460154625145328680363
= 404061733266890711072063 + 199543647476065953975463
= 416060428417743231176993 + 123686201189627686902373
= 419126360725080319361963 + 66055938812491490240563
= 419505873464281511126313 + 44486843215739102661213
= 419603314910589480711043 + 33197555650630055058923
= 419658476825428131435203 + 19527147227541032226283
= 419658897311362294765263 + 19330975426181222410263
= 419671426608046263634623 + 8452052028446535976743
= 380735441071427490777823 + 265540128590029792711943
= 386050418550008845400043 + 253962790940310286117923
= 393349623701862911178163 + 235460154625145328680363
= 404061733266890711072063 + 199543647476065953975463
= 416060428417743231176993 + 123686201189627686902373
= 419126360725080319361963 + 66055938812491490240563
= 419505873464281511126313 + 44486843215739102661213
= 419603314910589480711043 + 33197555650630055058923
= 419658476825428131435203 + 19527147227541032226283
= 419658897311362294765263 + 19330975426181222410263
= 419671426608046263634623 + 8452052028446535976743
Obviamente que tambièn existes los cabtaxi numbers que son aquellos que pueden obtenerse tanto como suma como por resta de cubos.
Asi tenemos :
Cabtaxi(1) = 0
= 13 - 13
= 13 - 13
Cabtaxi(2) = 91
= 33 + 43
= 63 - 53
Cabtaxi(3) = 728
= 63 + 83
= 93 - 13
= 123 - 103
Cabtaxi(4) = 2741256
= 1083 + 1143
= 1403 - 143
= 1683 - 1263
= 2073 - 1833
Cabtaxi(5) = 6017193
= 1663 + 1133
= 1803 + 573
= 1853 - 683
= 2093 - 1463
= 2463 - 2073
Encontrado por Randall Rathbun.= 33 + 43
= 63 - 53
Cabtaxi(3) = 728
= 63 + 83
= 93 - 13
= 123 - 103
Cabtaxi(4) = 2741256
= 1083 + 1143
= 1403 - 143
= 1683 - 1263
= 2073 - 1833
Cabtaxi(5) = 6017193
= 1663 + 1133
= 1803 + 573
= 1853 - 683
= 2093 - 1463
= 2463 - 2073
Cabtaxi(6) = 1412774811
= 9633 + 8043
= 11343 - 3573
= 11553 - 5043
= 12463 - 8053
= 21153 - 20043
= 47463 - 47253
= 9633 + 8043
= 11343 - 3573
= 11553 - 5043
= 12463 - 8053
= 21153 - 20043
= 47463 - 47253
Encontrado por Randall Rathbun.
Cabtaxi(7) = 11302198488
= 19263 + 16083
= 19393 + 15893
= 22683 - 7143
= 23103 - 10083
= 24923 - 16103
= 42303 - 40083
= 94923 - 94503
Encontrado por Randall Rathbun.
Cabtaxi(8) = 137513849003496
= 229443 + 500583
= 365473 + 445973
= 369843 + 442983
= 521643 - 164223
= 531303 - 231843
= 573163 - 370303
= 972903 - 921843
= 2183163 - 2173503
= 19263 + 16083
= 19393 + 15893
= 22683 - 7143
= 23103 - 10083
= 24923 - 16103
= 42303 - 40083
= 94923 - 94503
Encontrado por Randall Rathbun.
Cabtaxi(8) = 137513849003496
= 229443 + 500583
= 365473 + 445973
= 369843 + 442983
= 521643 - 164223
= 531303 - 231843
= 573163 - 370303
= 972903 - 921843
= 2183163 - 2173503
Encontrado por D.J. Bernstein.
>Cabtaxi(9) = 424910390480793000
= 6452103 + 5386803
= 6495653 + 5323153
= 7524093 - 1014093
= 7597803 - 2391903
= 7738503 - 3376803
= 8348203 - 5393503
= 14170503 - 13426803
= 31798203 - 31657503
= 59600103 - 59560203
= 6452103 + 5386803
= 6495653 + 5323153
= 7524093 - 1014093
= 7597803 - 2391903
= 7738503 - 3376803
= 8348203 - 5393503
= 14170503 - 13426803
= 31798203 - 31657503
= 59600103 - 59560203
Encontrado por Duncan Moore en 2005.
Cabtaxi(10) <= 933528127886302221000 = 83877303 + 70028403
= 84443453 + 69200953
= 97733303 - 845603
= 97813173 - 13183173
= 98771403 - 31094703
= 100600503 - 43898403
= 108526603 - 70115503
= 184216503 - 174548403
= 413376603 - 411547503
= 774801303 - 774282603
= 84443453 + 69200953
= 97733303 - 845603
= 97813173 - 13183173
= 98771403 - 31094703
= 100600503 - 43898403
= 108526603 - 70115503
= 184216503 - 174548403
= 413376603 - 411547503
= 774801303 - 774282603
Se conocen cabtaxi hasta el 20
Mas información en
http://cboyer.club.fr/Taxicab.htm
http://www.research.att.com/~njas/sequences/A011541
Si lo quieres compartir o guardar
No hay comentarios:
Publicar un comentario
Si quieres deja un comentario, si la entrada tiene mas de 15 dias deberás esperar a que la autorice y por favor si no tienes gmail deja tu nombre si no quedas como anónimo. Gracias!