lunes, 24 de abril de 2017

1480 - Conjeturando sobre la suma de potencias de dos primos

Tomemos dos primos como por ejemplo 2 y 3.
Calculemos todas las sumas posibles del tipo :
2m + 3n
donde m y n pueden tomar cualquier valor mayor a 0 y pueden ser iguales entre sí
Así obtendremos como resultados de esas sumas : 5, 7, 11, 13, 17, 19, 25, 29, 31, 35, etc.
De los números compuestos obtenidos veamos sus factores, así por ejemplo 259 = 7x37,  265 = 5x53.

Yo calculé todos las sumas posible para n y m entre 1 y 20 (400 sumas) y veo que entre los resultados, ya sea en la suma en sí o en sus factores, están  muchos de los primos menores a 200.
Salvo el 23, 47, 71, 167 y 191 están todos los otros, muchos como resultados directos de las sumas correspondientes y otros como factores.
La preguntas son las siguientes (preguntar es fácil, responder es lo difícil) :

1. Aparecerán todos los primos?, ya sea como suma directa, ya sea como factores de esas sumas.
2. Ocurre algo similar independientemente de los primos que tomemos como bases?
3. Alguien puede encontrar si aparecen el 23, el 47, etc?
Si lo quieres compartir o guardar
Share/Bookmark

sábado, 8 de abril de 2017

1479 - Continuando con Goldbach

A raíz del problema anterior, Graeme McRae encontró  solo dos números pares menores a 1000 (8 y 12)  que al sumarles cada uno de los primos que forman el par cuya suma da dicho número, esta suma da un número primo.
Para aclarar:

8   = 3+5 y 8+3 y 8+5 son números primos
12 = 5+7 y 12+5 y 12+7 son números primos
Para todo otro número par menor a 1000
Si P = mi  + ni   alguna de las sumas P + mi ó P + ni  es compuesto
Por ejemplo para 16
16 = 3+13 = 5+11 y la sumas 16+5 y 16+11 dan un número compuesto.

Hay muchos números pares en los que alguna de las sumas da primo, pero no en todas.


Por otra parte Graeme señala que 8, 12, 18, 24, y  30 son los únicos números en los que todas las sumas dan un número primo o que todas las sumas menos una da un número primo.

Por ejemplo 
24 = 5+19 = 7+17 = 11+13
Son primos 24+5, 24+19, 24+7, 24+17, y 24+13 pero 24+11 es compuesto.


¿Alguien puede encontrar algún otro ejemplo además del 8 y el 12 en los que todas las sumas dan números primos?

¿Alguien puede encontrar algun otro número par en las que todas las sumas menos una da un número primo? 
Si lo quieres compartir o guardar
Share/Bookmark

miércoles, 5 de abril de 2017

1478 - Conjetura de Goldbach

La conjetura de Goldbach dice : 

Todo número par mayor a dos puede expresarse como suma de dos primos.
o sea P = a + b 
donde P =  Nº par mayor a dos y a y b son números primos.
Así :
4= 2+2
6= 3+3
8= 3+5
10 = 3+7 = 5+5
12 = 5+7
14 = 3+11 = 7+7
etc

Ahora bien que pasa si a P le sumamos a o b, se obtendrá siempre al menos un número primo?
Lamentablemente no.
Por ejemplo 28 = 5+23 = 11+17 y 28+5, 28+23, 28+11 y 28+17 son todos números compuestos.
Los siguientes números pares no dan un primo cuando le sumamos alguno de estos primos
4, 6, 28, 38, 52, 58, 62, 68, 74, 80, 82  etc.

¿Cuáles son los primeros x pares consecutivos que no están en la secuencia? Donde x = 3, 4, etc.

¿Qué pasa si el primo a sumar puede ser cualquier primo?
Aparentemente siempre se puede encontrar un primo que sumado a un número par de un número primo.
Alguien puede demostrarlo o refutarlo?
Quizás ya está comprobado, disculpen mi desconocimiento sobre el tema.

Si lo quieres compartir o guardar
Share/Bookmark

viernes, 24 de marzo de 2017

1477 - Capicúas raros

64446 es un capicúa raro.
Es raro porque es la suma de dos primos consecutivos, 
64446 = 32213 + 32233
y además es la suma de dichos primos invertidos, 
64446 = 31223 + 33223

Otro ejemplo de capicúa raro es 264080462, ya que
264080462 = 132040201 + 132040261
y
264080462 = 102040321 + 162040231

¿Habrá otros ejemplos?


Sobre una idea de ady Tzidon
Si lo quieres compartir o guardar
Share/Bookmark

miércoles, 8 de marzo de 2017

1476 - Pares que suman cuadrados

Rafael Cerezo Perez me comentó que vio en internet lo siguiente:
La suma de los números 184 y 345, al igual que la de sus cuadrados y sus cubos dan cuadrados perfectos ¿Existen otros números con esta característica?

Buscando pares hasta el 10000, yo encontré estos pares que cumplen lo pedido,

184  y  345
736   y 1380
1656  y  3105
2944  y 5520
4600  y  8625


¿Mas ejemplos?
¿Existen pares en los cuales las sumas de potencias mas grandes además de las pedidas sean también sean cuadrados (cuarta, quinta, etc)?
Si lo quieres compartir o guardar
Share/Bookmark

lunes, 20 de febrero de 2017

1475 - Formando primos

Hoy que es el día 51 del año, Jim wilder publicó el siguiente tweet:



Que traducido sería mas o menos así :
Para el día 51 : 51 es el menor número que puede escribirse con los números del 1 al 5 como suma de primos

Eso me dio la idea para la siguiente entrada.
Con los números del 1 al 3 podemos formar los siguientes primos : 2 y 13 cuya suma es 15, también podemos formar 2 y 31 pero la suma es mayor a la anterior, 33, por lo tanto nos quedamos con los números anteriores

Con los números del 1 al 4 podemos formar los siguientes primos :  2 y 431 cuya suma es 433 pero también podemos formar 3 y 241 cuya suma es menor, 244, por lo tanto tomamos esta como solución válida.

La idea está establecida, lograr formar con los números del 1 al n primos de forma tal que la suma de dichos primos sea la mínima posible.

Acá van los resultados que yo obtuve (sin esforzarme por encontrar las sumas menores, cosa que dejo para ustedes)

3 = 2, 13  Suma 15
4 = 3, 241 Suma 244
5 = 2, 3, 5, 41 Suma 51
6 = 461, 523 Suma 984
7 = 7, 461, 523 Suma 991
8 = 5, 7, 461, 823 Suma 1296
9 = 5, 97, 461, 823 Suma 1386
10 = 5, 461, 823, 1097 Suma 2386
11 = 5, 23, 461, 811, 1097 ó 5, 11, 461, 823, 1097 Suma 2397

Nótese que a medida que entran los números de dos cifras éstas deben permanecer juntas.
Encontrar las menores sumas de primos formados por los primeros n números.
También se puede empezar con el cero 2, 103, etc.

 







Si lo quieres compartir o guardar
Share/Bookmark

jueves, 19 de enero de 2017

1474 - Un nuevo tipo de cuadrado mágico

En base a una idea de William Walkington y a un aporte de Inder Jeet Taneja, Walter Trump desarrolló el siguiente cuadrado mágico, que además de poseer todas las cualidades de un cuadrado mágico tradicional, el área geométrica de cada celda se corresponde con su numero.


 Se  puede leer el desarollo y la historia de estos cuadrados mágicos el el siguiente sitio : Magic squares


Si lo quieres compartir o guardar
Share/Bookmark