jueves, 19 de enero de 2017

1474 - Un nuevo tipo de cuadrado mágico

En base a una idea de William Walkington y a un aporte de Inder Jeet Taneja, Walter Trump desarrolló el siguiente cuadrado mágico, que además de poseer todas las cualidades de un cuadrado mágico tradicional, el área geométrica de cada celda se corresponde con su numero.


 Se  puede leer el desarollo y la historia de estos cuadrados mágicos el el siguiente sitio : Magic squares


Si lo quieres compartir o guardar
Share/Bookmark

domingo, 8 de enero de 2017

1473 - Números como suma de repdigits

Llamamos repdigits a los números que contienen repeticiones de un determinado dígito.
Ejemplos 11, 666, 2 , 333333, etc.
Rodolfo Kurchan propuso la semana pasada en Facebook, encontrar los menores números que no pueden formarse como suma de n repdigits.
Así la serie empieza  10, 21, 320, 2219, 32218,....
21 figura porque es el menor número que necesita al menos tres repdigitos como sumandos para poder formarse : 11+9+1, o 11+8+2, o 11+7+3, 9+8+4, etc 

 Pregunta  1 : ¿Cómo sigue la serie?

Otras de las preguntas que se hace Rodolfo son:
Supongamos que son válidos todos los números que son suma de repdigts, pero dentro de los sumandos no puede haber dos o mas repdigits de un mismo dígito (por ejemplo no es válido sumar 222+22+6, ya que hay dos repdigits del 2), 
Pregunta 2 ¿Cuál es el menor número que no se puede formar? 
Pregunta 3 ¿Cuál es el menor primo que no se puede formar con esta misma condición?
Pregunta 4 ¿Con esta nueva condición como sería la serie? 
Los primeros números serían los mismos? ya que :
10 =  9+1
21 =  11+8+2
320 = 1+9+88+222
2219 = 11 +99 +444 + 777+ 888
Pero el 131 no hay forma de lograrlo con tres repdigits de digitos distintos, como así tampoco el 861 con cuatro así que la serie en este caso empieza : 

10, 21, 131, 861,...

Pregunta 5 ¿Cual es el número con mayor cantidad de dígitos diferentes que se pueden formar sumando Repdigits que no compartan digitos entre ellos?

Por ejemplo 
12345 = 3 + 22 + 99 + 4444 + 7777
108942 = 55 + 888 + 99999 

Rodolfo me acota que en su libro "Nuevos acertijos con números" que escribió con Jaime Poniachik, había problemas como este último. Aquí van algunos de ellos:

Si lo quieres compartir o guardar
Share/Bookmark

domingo, 1 de enero de 2017

1472 - La conjetura de Rodolfo

En la entrada 1469 les hablé  de un paper que Gustavo Piñeiro leyó y nos comentó en un grupo de chat, en el que se demostraba que cualquier número podía escribirse como la suma de al menos 49 capicúas.
En ese mismo grupo de chat, Rodolfo Kurchan nos avisó que encontró una página en la que se habla de una demostración de Javier Cilleruello en la  que cualquier número entero podía expresarse como la suma de tres capicúas.

Rodolfo investigando y probando un poco me comentó que cree que la mayor parte de los números puede expresarse como la suma de dos capicúas en tanto que el resto de los números puede expresarse como suma de dos capicúas siendo uno de ellos un capicúa especial. 
Estos capicúas especiales son números capicúas, pero a diferencia de los demás pueden tener uno o mas ceros por delante, es decir que son válidos números como 01610, 00023232000, etc.

Así por ejemplo el año que finalizó y el que acaba de comenzar se pueden expresar como :

2016 = 1441 + 575 
2017 = 1331 + 686

Inclusive números grandes como :
20149580973 = 19869096891 + 280484082

Algunos ejemplos que usan el capicúa especial:

2001 = 1001 + 0001000
20201 = 11111 + 09090
2073 = 363 + 01710
91729 = 91619 + 0110

Ahora bien, la pregunta que se hace Rodolfo (y yo también) es si es verdad su conjetura de que cualquier número entero puede ser escrito como suma de dos capicúas  (pudiendo ser uno de estos capicúas un capicúa especial)

Actualización (4/01/2017):. Lo que buscamos ahora es el menor número que no puede formarse sumando dos capicúas (pudiendo ser uno o los dos especiales, o no) si la conjetura es falsa, sino demostrar que es verdadera
Si lo quieres compartir o guardar
Share/Bookmark