lunes, 13 de mayo de 2013

1135 - Dividiendo pandigitales

Hay muchos números pandigitales sin cero (o sea que tienen todos los dígitos del 1 al 9 una  sola vez cada uno) que pueden ser divididos en cuatro números de dos formas diferentes tal que el producto de los términos de cada una de las divisiones de el mismo producto:

Ejemplos

123596847 : 12x35x968x47 =  1x235x96x847 = 19108320 

297541368 :  29754x13x6x8 = 2x9x754x1368 = 18566496

584136297 :  5841x36x29x7 = 58x413x6x297 = 42686028

638742915 :  638x742x9x15 = 63x87x4x2915 = 63908460

Pero de todos los que encontré, solo uno da un producto con todos los dígitos diferentes, serías capaz de encontrarlo?

Si lo quieres compartir o guardar
Share/Bookmark

5 comentarios:

  1. Claudio, encuentro muchos números que 2 productos distintos dan el mismo número sin dígitos repetidos, como:
    1265x37x4x98=18347560
    1265x37x49x8=18347560

    ¿no será que el producto debe contener todos los dígitos?, o he entendido mal la pregunta.

    Vicente iq.

    ResponderEliminar
  2. Vicente : has entendido bien, yo no busqué todos, sino solo los que se dividen en cuatro números diferentes como los que están en mis ejemplos. Pero quizás haya mas de uno.

    Lo que no busqué es en los del tipo que tu pones en que las divisiones tienen números en común (como el 1235 y el 37 de tu ejemplo) y me olvidé de aclararlo.

    Pido Disculpas

    ResponderEliminar
  3. 8 x 6794 x 13 x 52 = 36741952
    86 x 79 x 4 x 1352 = 36741952

    Es curioso que la multiplicación da un nº con los mismos dígitos, excepto el 8.

    vicente iq.

    ResponderEliminar
    Respuestas
    1. Muy bien Vicente, revisando las 157 soluciones que tenia veo que hay por lo menos una mas que cumple en la que también desaparece el ocho....

      Eliminar

Si quieres deja un comentario, si la entrada tiene mas de 15 dias deberás esperar a que la autorice y por favor si no tienes gmail deja tu nombre si no quedas como anónimo. Gracias!